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Abstract

Estimation of parameter in a new discrete distribution which is analogous to Burr distribution is
discussed in this paper. The maximum likelihood and the method of moment estimators are obtained.
The asymptotic normality of the moment estimator is established. The asymptotic relative efficiency
of the maximum likelihood estimator over the moment estimator is computed.
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INTRODUCTION

sreehari (2010) has characterized a class of discrete
distributions which tums out to be the discrete
analogue of Buir (1942) family. The probability
mass function (pmf) of the random variable X of the
d-th distribution in the class characterized by
Sreehari (2010) is

X

(r+1-0)—2  x=012 ..0<0<1
p(x.0) = (x+1)!
0, otherwise.
(1.D
The distribution function of X'1s
0, x<0
_ [x+1]
=l 2 . i
([x+l])! (1_2)

We refer to this distribution as S(d) distribution. The
probability generating function (pgf) of X'is

f(s)=E(s*)
_ 1-(1-5)e*

»

0<s<l.
s

The mean and the variance of X are respectively
EX)= /')
=e —1 and

Var(X) = "D+ /D) -(/" (1)
=e?(20 —ef +1)

It can easily be seen that E(X) > Far(X) and hence
S(d) — distribution is under dispersed. The pmf of this
distribution is similar to that of Poisson distribution
in structure but its mean and variance are equal.
Therefore S(d) distribution can be a suitable model
for the data exhibiting under dispersion and Poisson
is not a good fit.

MAXIMUM LIKELTHOOD ESTIMATION (MLE)

if X =X, X, .. .X,)is a random sample on X
having the pmf specified in (1.1), then the likelihood
function becomes

L(0]x) = ﬁP(sz})

a"
(x, +D

1|0 =[x, +1-6)

The log-likelihood function is
log L(6 | x) = i log(x; +1-0)+ ixj log 6 —constant.
Jj=1 j=1
The likelihood equation is
\ 2%
dlogL(8 | x) = _Z 1 =
do B, il =) (7]

=1

The maximmum likelihood estimate of 8 1s the solution
of

n 9
2 T

J1 X

nx =0
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-~ 1 n

X= —zxj
where "= . It is evident that this likelihood
equation does not yield a closed form expression for
the maximum likelihood estimate (MLE) of 8 Hence

a numerical procedure like Newton-Raphson method
can be employed to compute the MLE O e .
FISHER INFORMATION

When X has the pmf specified in (1.1),
log p(x,0)=log(x+1-0) + xlog&— log(x+1)!

dlogp -1 N
Also d0 x+1-0 6
d*logp -1 X
and do? (x+1-8)*> 6%
Hence
giler|. $_ 1 ) 3 i
do’ Sekl=g) 0 St
S L e 1y e
Z(x+1-0) (x+1)! 0 (x+D)!
E d'loggp :_Z 1 2] —L,(ee—l)
do- =(x+1-0) (x+1)! ©6° _
The Fisher information becomes
I(G)ZE{M]
de-
= 1 a*

- 1 e
_Fo(xﬂ,@) (x+1)T+63 (e -1).

The infinite series evidently converges for all values
of 81n (0, 1) but its sum is not tractable. Hence it can
be numerically computed correct to desired number
of decimal places.

Note that

1) the support S = {x: pfx, > 0}
depend on the parameter 6.

i1) the parameter space (0, 1) is an open set.

iii) log p(x, 6) can be differentiated twice wr.t. 8

does not

_ ip(x,ﬂ)zl

V) 0 1s twice differentiable
summation sign.

under

Therefore p(x, 0) satisfies the regularity conditions
of Cramer (1966) and it belongs to Cramer family.

Hence if X =X, X5, .. .X,)is a random sample

on X having the pmf specified in (1.1) and Omie is
the MLE of €, then
\/;(éjnie

—9)—L>N{ ] as n — o,

0,—
1(0)

That is Owe is consistently and asymptotically

normal (CAN) for & with the asymptotic variance
1

1(6) .
METHOD OF MOMENT ESTIMATION (MME)

When £ = (X1, X5, ... X)) is a random sample on
X having the pmf specified in (1.1), the moment
estimator of @ is the solution of the equation

e’ =X » . Hence the moment estimator of 81s
émme = log(X_'H + ]‘) “

Since the pmf of X does not belong to the
exponential family, we need to establish the
asymptotic normality of the moment estimator
separately. The following theorem states the
asymptotic normality of the moment estimator.

Theorem: If X = (X, X,.....X,)is a random
sample on X having the pmf specified in (1.1), then

E Proof:
Since X, X, . . ., X, are iid with E(X)=€"-1 and
Var(X) = (20 e +1) < @ by Levy -
Lindeberg central limit theorem

z, =\ (X, ~€ D2 N0, 20— +1)}as n .

2 1
J;(Bmm - 6] %A{U,ee(m—ee +1)( = s n = o0,
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g(x)=log(x+1). ' 1
g'(x)=—

Take Then x+1is non-
vanishing and continuous for 0<x¥<l Hence by
Mamn-Wald theorem stated in Mukhopadhaya
(2000),

, e?(20-ef +1)

Jnllog(X, +1) — 8) —L— N(
@+1)2

), as n— o

That

is Gmme is CAN with the asymptotic variance
1

@+1)”

The asymptotic relative efficiency of the MLE over

the MME is given by

ef(20-¢f +1)

ARE = Asymptotic variance of MME

Asymptotic variance of MLE

|

Since the asymptotic variance £ (6) of the MLE does
not have a closed form expression, it is computed for
various values of @ and the ARE is shown in the
following table.

8 0.1 0.2 0.3 04 0.5
ARE | 1.3405 | 2.3291 | 3.0257 | 3.8895 | 4.934

8 0.6 0.7 0.8 0.9 0.95
ARE | 6.1455 | 6.1452 | 7.1479 | 8.6441 | 9.0807

The ARE of the MLE over the MME is uniformly
greater than unity and therefore the MLE is
asymptotically more efficient than the MME.

ILLUSTRATION

Srechari (2010) has compared the fit of S(d) and
Poisson models for a clinical trial data set. A
bicequivalence study was conducted for a test drug
(T) and a reference drug (R) by administering them
to 144 individuals using a two period, two sequence
and two treatment crossover design. The time until
maximum concentration (T..) was one of the
characteristics observed. Let T, and T, respectively
denote the T, values corresponding to the i-th
individual for the test and the reference drugs. Take
D;=|Ti—T4. The individuals were administered the
drugs and their blood concentrations were measured
Jjust prior to medication and at time points (in hours)

1,2,4,6,8 10,12, 14, 16, 20, 22, 24, 30, 48, 60, 72,
96, 120 after medication. Of the 144 individuals 7
did not complete the course of treatment. The
observed values of D, for the 137 mdividuals are
shown in the following table.

X 0 1| 2]3|Total
Frequency | 75|46 |14 | 2| 137
For this observed distribution, mean = 0.583942 >
variance = (0.534925 and it exhibits under dispersion.

And B = 10g(%, +1) = 04599,y thor

X Observed Expected frequency
frequency S(d) Poisson

0 75 73.9915 76.4043
1 46 48.5192 | 44.6157
2 14 12.268 13.0265
3 2 222129 | 2.95354
Chi-square value | 0.41111 0.64342

It is evident that S(d) fits better than the Poisson
model to this observed distribution. But S{d) model
cannot be fitted to all under dispersed data. We have
0 < 6<] and hence 0<E(X)<e-1 If

0<x<e-1 js violated, then it leads to

O,me = log(x, +1) > 1 which is inadmissible. For
example, consider the data on the number of
scintillations from radioactive decay of Polonium
reported by Rutherford and Geiger (1910). This data
set has been reproduced in Santner and Duffy (1989).

x| 0 1 2 3 4 5 6
f| 57 [203[383]525]532[408| 273
X
f

7 8 9 [ 1011 |12 (13]14
13945 [ 27 | 10 | 4 0 | 1|1

(x: number of scintillations, t: frequency)

For the observed data, mean = 3.871549 > variance =
3.694773. This exhibits under dispersion. But
Ope = log(, +1) =1.58341 > 1
madmissible.

SIMULATION

Random observations on X can be simulated using
the distribution function (1.2). A modest simulation
study has been carried out to study the performance
of the MLE and the MME of 6. Using R, 1000

which is
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samples of size 50, 100, 150 were simulated for the
specified value of & = 0.4 and the estimates were
computed. The MLEs were obtained by solving the
likelihood equation by Newton-Raphson method and
the MMEs were taken as the initial estimates. The
histograms of the estimates are displayed in Figures
6.1-6.2.
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Figure 6.1: Histogram of the MMESs and the MLEs of
0 based on 1000 sample of size 100 for 6=0.4.
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Figure. 6.2: Histogram of the MMEs and the MLEs
of 6 based on 1000 sample of size 150 for 6 =0.4.

These histograms give graphical evidence for the
asymptotic normality of both the estimates. But the
MLE approaches normality faster than the MME.

CONCLUSION

The S(d) distribution is an appropriate alternate to
Poisson model when the observed data exhibit under
dispersion. Though the maximum likelihood
estimator of the parameter of S(d) has no closed form
expression, it can easily be computed by Newton-
Raphson method. The moment estimator of the
parameter has a closed form expression and easy to
compute. Both the estimators are asymptotically
normal. When computer facility is available, the
MLE can be preferred to the MME since the former
approaches normality faster than the later.
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